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Chapter 6
Digital Twins and
Intelligent Decision
Making

Jack C Chaplin, Giovanna Martinez-Arellano and Andrea Mazzoleni

6.1 Introduction

Twin (noun): something containing or consisting of two matching or
corresponding parts.

- Oxford University Press

Chapter 5 discussed ways of simulating and modelling manufacturing systems
an offline manner. Offline in this context means the simulation is running
disconnected from the real system and is reliant on the user to update parameters
and data to maintain the accuracy of the model. In contrast, this chapter details
online simulations, where the model is connected directly to the physical system
and is automatically updated as the system changes. This approach is common
called a digital twin. In addition, this chapter will discuss decision support systems,
which are software packages intended to enhance the decision making process
discussed in Chapter 4, and to make complex problems solvable.

A digital twin is a simulated replica of a complex system. Unlike more
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conventional simulation, the digital twin is connected in real-time to the physical
equivalent and collects generated data. This allows the digital twin to improve its
accuracy based on the real system, and for the digital twin to analyse the system or
perform tests which would be too costly or time consuming to run on the real thing.
Digital twins are used to model complex systems and have their origins in the
modelling of air and spacecraft.

The first definition of a digital twin (then just a nameless concept) was coined
by Michael Grieves in 2002 [1] as a concept for product-lifecycle management.
After many different names including Mirrored-Spaces Model, Information
Mirroring Model, and Virtual Twin, the now established name “digital twin” was
subsequently introduced by John Vickers in a NASA report published in 2010 [2]
and has become the standard terminology. A review of literature published between
2012 and 2016 by Negri and colleagues [3] as part of the MAYA project found 16
different definitions for digital twins across four research fields: aeronautics and
space, robotics, manufacturing, and informatics. Some of the proposed definitions
can be found in Table 6.1-1.

Year Definition

2010 An integrated multi-physics, multi-scale, probabilistic simulation
of a vehicle or system that uses the best available physical models,
sensor updates, fleet history, etc., to mirror the life of its flying
twin. The digital twin is ultra-realistic and may consider one or
more important and interdependent vehicle systems [4].

2012 Ultra-realistic, cradle-to-grave computer model of an aircraft
structure that is used to assess the aircraft’s ability to meet mission
requirements [5].

2015 Very realistic models of the process current state and its behaviour
in interaction with the environment in the real world [6].

2016 The simulation of the physical object itself to predict future states
of the system [7].

2018 Digital twins are realistic digital representations of physical
things [8].

Table 6.1-1 Definitions of digital twins in chronological order.

Grieves described the digital twin model at its most basic with the diagram seen
in Figure 6.1-1. A digital twin always corresponds to a physical twin – the actual
physical in stance of the product that is being simulated with the digital twin.

The physical twin and digital twin are connected. This is what distinguishes a
digital twin from a more conventional simulation. Data is collected from the
physical twin in real-time with sensors and used to improve and optimise the digital
twin. The digital twin can run analysis methods, and multiple possible scenarios can
be tested digitally. The processed information gained from these can be fed back to
the physical twin to optimise the real-world performance.
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Figure 6.1-1 The digital twin is the virtual counterpart to the physical twin, and is
used to better understand complex systems such as manufacturing lines or rockets.

Data collected with sensors in the physical twin inform the digital twin and
improve accuracy, and insight gained by analysing the digital twin can be used to

control the physical twin. Image rights: Author, adapted from [1].

Simple systems can be simulated to a sufficient level of detail that the added
complexity of a real-time connect may not be required. Digital twins are typically
reserved for complex systems where creating an adequate simulation offline is not
possible, and the simulation must be improved over time.

“Airplanes, rockets, manufacturing floor equipment, and even automobiles have
or will have [digital twin instances]. Paper clips will not”.

- Michael Grieves

The key differentiating factor between a conventional model and a digital twin
is that the physical system is feeding real-time data into the digital twin to update
the model. Though significant structural changes to the physical system may require
manual intervention, data such as manufacturing throughput, buffer sizes, up/down
times etc. can be automatically collected and used to keep the digital twin updated.
Any simulations that run on the digital twin’s model use the latest, most accurate
information.

Before digital twins are discussed further, it is important to understand how it is
possible to connect a digital twin simulation to the physical twin – the online aspect
which differentiates the approach from the offline approaches in Chapter 5. This is
achieved using sensors to monitor the physical twin, and report back its state, and
section 6.2 will introduce sensors and the modern development of smart sensors.
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6.2 Sensors

6.2.1 Introduction to Sensors

The manufacturing industry must achieve sustainable growth and increases in
productivity to remain competitive on the global stage. Increasingly, access and
exploitation of manufacturing data is contributing to these aims, enabling quicker,
more effective decision-making.

One of the key technologies for data exploitation is the Internet of Things (IoT),
which embeds sensors and communication equipment in manufacturing
machineries and lines, each collecting and transmitting data to the manufacturing
enterprise’s network. The application of these techniques to manufacturing is also
sometimes called the Industrial Internet of Things (IIoT).

IoT is a recent development and is a broad term for a set of technologies, systems,
and design principles associated with using Internet‐connected things that monitor
and manipulate the physical environment. IoT connects sensors and actuators, to
information and communication technologies (ICT) systems via wired or wireless
networks. The most important technology at the device or hardware level in this
network infrastructure is the sensor technology, as it is the most basic means for
collecting and controlling data in real time.

A sensor is a device that observes and measures a physical property of a natural
phenomenon or man-made process, and converts that measurement into a signal.
That signal can then be reported to a worker, used to trigger an actuator, or collected
for analysis. Sensors have played a role in manufacturing since their invention. They
provide a means for gathering information on manufacturing operations and
processes as they are performed. Typically, this means some property of the process
(temperature, speed, location etc.) is converted into an electrical signal and collected
by the process controller, often a programmable logic controller (PLC). The
controller may use the sensor reading to modify the process, or the signal may just
be logged for later inspection.

Process data are records of the processing performed to create products,
including details such as the program performed (for a CNC machine), the user-set
process parameters, and recorded data from sensors such as vibration, temperature,
or cutting force (depending on the process). Correlating this with the individual
product ID allows for analysing this data relative to the quality outcomes or service
life of the specific product. Most traditional sensors convert their measured property
into electricity, and hence require a wire or cable to connect with the external
instruments that record this value. The cable can be copper wire, twisted pair or
fibre optic.

The data from sensors must somehow be sent to a computer for interpretation or
storage. Often this will be a local PLC or data capture device where the sensor data
can immediately be acted upon. It may be a remote server where data can be logged
in a database or simple spreadsheet. Fieldbus is the term used for industrial
computer networks. Many standards exist including Ethernet, Industrial Ethernet,
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Controller Area Network (CAN), Process Field Bus (Profibus) and a wide variety
of vendor specific technologies. Use of these will depend on equipment
compatibility and the requirements for process control.

Wireless sensors offer flexibility of installation, resulting in improved process
monitoring and control while simultaneously offering reduced installation and
maintenance costs. Industrial applications offer a broad scope for growth in wireless
sensor use, but this growth cannot be achieved without overcoming some of the key
challenges facing the market:

 Evolving standards: New wireless communication technologies are still under
research and development. Some of these standards might not be compatible with
others, limiting the interoperability of the network.

 Network size: The application or use case scenario will determine the size of the
network. Some wireless approaches are better for smaller or larger scales of
deployment, and if the application demands a change in location, number of
nodes or adjustments to topology the approach may have to be changed.

 Open wireless frequency bands: With the propagation of wireless technologies
such as mobile phones and Wi-Fi, there is a lack of open frequency bands.
Currently, most wireless sensor network devices operate in unlicensed bands
such as 915 MHz and 2.4 GHz, and reliable communication can be affected by
interference from other devices operating in the same frequency band.

 Industrial safety: Making a wireless sensor system fail-safe depends heavily on
the type of application in which the wireless sensor is used.

On top of these networks, many higher level machine to machine communication
protocols exist for exchanging process data (rather than control data) in industrial
automation settings. These include Open Platform Communications – Unified
Architecture (OPC UA), MTConnect, Data Distribution Services (DDS), and MQ
Telemetry Transport (MQTT). The standards will significantly simplify the
acquisition of process data by handling many networking aspects and providing a
common standard for data.

6.2.2 Types of Sensors

Sensors convert physical phenomena into signals, and are an example of a
primary data source (see section 5.2.2). Almost any physical phenomena can be
measured with a sensor, but the most common types used are listed below.

 Temperature: This sensor gives temperature measurements as an electrical signal
(e.g. voltage) proportional to the temperature measurement. There are various
electrical temperature sensors such as the thermistor, thermocouple, resistance
thermometer and the silicon band gap temperature sensor, and each have
different properties which make them better or worse for certain situations.
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 Force, pressure: There are devices that convert variations in applied force or
pressure into an electrical signal. There are two principles that have become
dominant in force measurement; strain gauge-based sensors and piezoelectric
force sensors. Strain gauge sensors contain an electrically conductive foil which
deforms as force is applied. This deformation changes the electrical resistance of
the spring, and this property is converted to an electrical signal. Piezoelectric
sensors contain two crystal disks with an electrode foil mounted in between.
When applying force, this generates electrical charge that can be amplified and
used as a signal. Piezoelectric sensors are first choice for fast measurements of
small forces while strain gauge-based sensors are superior when larger forces are
involved [9].

 Level: These sensors detect the level of liquids and other fluids and fluidised
solids such as powders, and are common in industrial process control. Examples
include hydrostatic sensors (which measure water pressure to deduce water
level), and optical level sensors which use the attenuation of light to measure
fluid depth.

 Acceleration, vibration: Motion can also be detected with sensors.
Accelerometers measure acceleration in a single direction, and are often
combined into units with two (bi-axial) or three (tri-axial) accelerometers at right
angles to detect the direction of acceleration. Accelerometers can also be used to
detect vibration. Accelerometers are often Micro-electro-mechanical Systems
(MEMS) that converts the motion of a small mass into an electrical signal with
piezoelectric crystals. These crystals generate small electrical signals when
subjected to mechanical stress.

 Orientation: Gyroscopic sensors detect rotation around a single axis, and like
accelerometers are often combined into bi-axial and tri-axial sensors. Tri-axial
accelerometers can in fact detect the orientation of a stationary object as they
detect Earth’s gravity. However, accelerometers cannot do this while the object
is moving. Tri-axial accelerometers and tri-axial gyroscopes can be combined
into Inertial Measurement Units (IMUs). IMUs are used to determine the
orientation of mobile phones, adjustment of suspension in cars, and control of
aircraft.

 Proximity: Proximity sensors detect if an object is physically close to the sensor,
and effectively detect the presence or absence of objects. They can be
implemented with a variety of technologies including optical, inductive,
magnetic and capacitive methods. They are widely used in industrial automation
like conveyor lines for counting and jam detection, and in machine tools for
safety interlock and sequencing.

 Position: Position sensors detect the mechanical position of objects. They often
use similar technologies to proximity sensors, but can determine if an object is
present, but also how far the object is from the sensor. They can measure absolute
distance, angular rotation, and tilt angles depending on the technology used and
application. These are commonly used to control the motion of robots and
actuators, rotation of valves, and angles of actuators.
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 Other sensors include humidity, gas, biosensor, photoelectric, flow, and many
others, far more than can be described in this book.

A discussion of sensors with additional detail on their applications in robotics
can be found in Chapter 8.

6.2.3 Smart Sensors

At their core, sensors are often very simple mechanical or electronic devices to
convert physical stimuli into electrical signals. However, the progress and
miniaturisation of technology, combined with the move towards the Internet of
Things means many sensors (and a particularly high percentage of wireless sensors)
have more features than just signal transducing.

Smart sensors are microprocessor driven and include features such as
communication capability and on-board diagnostics that provide information to a
monitoring system and/or operator to increase operational efficiency and reduce
maintenance costs. They can perform some computation locally, reducing the
amount of information that must be transmitted. This is particularly important for
wireless sensors which have less bandwidth available than wired sensors. Common
characteristics of smart sensors include:

 Signal conditioning that preserves integrity and ensures isolation in harsh
industrial environments, smoothing out noise and amplifying weak signals.

 Using local computing power to process and interpret data locally; make
decisions based on the physical parameters measured, adjust parameters
autonomously, and be selective about what data is transmitted.

 Built-in diagnostics for simplified troubleshooting and maintenance.
 Complying with a variety of communication standards such as Wi-Fi, Bluetooth

and Zigbee, rather than being constrained to a single technology.

Sensors have been utilised in manufacturing for decades, but smart sensors offer
new and diverse benefits that can potentially lead to greater profitability and
productivity. Principally, smart sensors offer richer data – the context and relevance
of the data is recorded in addition to the signal itself, and smart sensors can be
selective about the data which is sent and where it is sent. Applications of smart
sensors to manufacturing include:

 Aggregation and collection of big data: Big data and data mining uses extremely
large quantities of data to “mine” for insights. Smart sensors facilitate this in
three ways;
 Firstly, smart sensors are often simpler to implement than conventional

sensors, as they include all the necessary equipment and wireless
communication protocols to connect to existing manufacturing execution
systems in a single package without running lots of cables.
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 Secondly, the ability for smart sensors to pre-process data allows them to
aggregate larger quantities of data and transmit them effectively. Big data and
data mining typically relies on very large quantities of data to achieve the best
insights, and simple sensors may not be able to gather and share the required
data volumes.

 Thirdly, smart sensors can often communicate with one another, allowing data
from sensors to be correlated to each other, facilitating the analysis of data
from multiple sources.

 Quality control: Quality is critical to manufacturing competitiveness, and quality
control must be an integral element of the manufacturing process. Identifying
problems early reduces or removes the cost of scrapped parts of expensive re-
work. Keeping processes in control requires monitoring, and this is traditionally
done with conventional sensors to feed into control charts and statistical quality
control methods. Smart sensors however are able to pre-process data to detect
anomalies as they occur, and provide real-time alerts and flags when processes
are deviating from nominal. The additional features of smart sensors allow them
to send richer information than just a signal relative to the physical parameter,
and to make decisions.

 Improving and automating logistics and asset management: Battery powered
and communicating wirelessly, smart sensors can track the location of assets,
vehicles, inventory, or people. The data can be used by manufacturers to track
logistics and the supply chain, monitor the movement and utilisation of assets,
and find lost parts and tools.

 Regulatory compliance: Many manufacturing sectors are highly regulated, with
stringent rules on data collection and data storage to ensure compliance.
Compiling the necessary reports from sensor data, logs, and records across
multiple systems can be extremely time consuming and labour intensive. A well-
managed data management system combined with smart sensors can
dramatically simplify this process, with sensors able to collect environmental
data such as temperature and humidity, as well as equipment utilisation data such
as energy consumption, hours of operation, and maintenance information.

6.2.4 Product Tracking

The fundamental function of sensors is to detect physical phenomena and convert
it to electronic signals, but sensors may not always be as simple as converting (for
example) a temperature to a voltage. A carefully set up optical sensor can become
are barcode reader, allowing for richer and more complex information about the
world to be collected. Product tracking is the use of sensors to determine what
specific item is at a location, allowing for unique products to be tracked and more
granular information to be collected. This information could then be fed into a
digital twin, giving it live data on the products being produced.
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Product tracking requires three key features to be implemented:

1. A way of uniquely identifying the product (or part, or asset) being tracked.
2. A way of acquiring data about the product (such as measurement data or process

data) that can be correlated to its identifier.
3. A way of storing the acquired data for future reference.

There is no inherent requirement for any of these three features to be automated.
The identifier could be a number written on the part with a marker pen, the
acquisition of data could be process parameters noted on a sheet of paper, and the
data could be stored in a plastic folder for later reference. This may seem an
exaggerated example, but this approach remains extremely common in modern
manufacturing companies both large and small. Handwritten job cards are still the
most common standard used, and can function extremely effectively. However,
every instance of manual data entry raises the chances of a mistake being made.
Manual data entry also represents a skilled worker performing a low skilled job, and
their time could often be better spent.

Automated product tracking technologies can fit into each of these three
categories. They enable the identification, acquisition, and storage of data with less
worker effort or no effort at all. They also significantly reduce the probability of
error, and make data recall and analysis easier by enforcing common data standards.
Automated product identification, also referred to as Automatic Identification and
Data Capture (AIDC) are technologies that allow data to be entered into a computer
system with little to no human involvement. The most common example of AIDC
is the use of barcodes in retail stores. The use of these codes shows the three critical
stages of AIDC:

1. Data encoding: Human-readable characters or numbers are rarely the most
efficient way for AIDC technologies to represent data. Instead, data (such as the
product number) is encoded in some way, such as the width of the bars in a
barcode.

2. Data reader: A device able to reliably read the encoded data, and convert into
an appropriate data format for transmission. The barcode scanner is an example
of a data reader.

3. Data decoder: The data decoder converts the signal from the data reader back
into the original characters that were encoded. For example, this would give the
barcode number representing the product. The Point of Sale (POS) software can
then look up the number in a database and retrieve the name and price of the
item.

AIDC uses many different technology types, with different advantages and
disadvantages. These are detailed in the table below [10]:
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Technique Performance Advantages Disadvantages

Human

Manual
Entry

Sensor Type: Manual

Entry Time: Slow
Error Rate: High
Cost: Low

Low initial cost.

Simple to set up.

Highly adaptable.

High ongoing cost (cost of a

worker’s time).

Slow entry speeds.

Prone to error or omission.

Biometric Sensor Type: Optical
(typically)
Entry Time: Medium

Error Rate: Low
Cost: Medium

Intuitive.

Rapid identification of

people.

Appropriate for security

applications.

Niche applicability.

Often unpopular.

Initial setup requires

physical presence of people.

OCR (Optical
Character
Recognition)

Sensor Type: Optical
Entry Time: Medium
Error Rate: Medium

Cost: Medium

Data remains human

readable.
Characters must be printed.

Low data density.

Error rate condition (e.g.

lighting) dependant.

Machine
Vision

Sensor Type: Optical
Entry Time: Fast

Error Rate: Application
Dependent
Cost: High

Versatile application.

Equipment can be reused for

different applications.

High speed.

Can read other forms of data

encoding such as barcodes.

Success highly dependent
on application and quality

of implementation.

1D Barcode Sensor Type: Optical
Entry Time: Medium
Error Rate: Low

Cost: Low

Cheap to implement.

Versatile.

Easy to print and affix

barcodes.

Lower data density than 2D

barcodes.

2D Barcode Sensor Type: Optical
Entry Time: Medium

Error Rate: Low
Cost: High

High data densities.

Reliable and versatile.

Barcodes take up more

space than 1D, but still easy

to use.

Equipment cost higher than
1D barcodes, so consider if

2D is necessary.

RFID (Radio
Frequency

Identification
Tags)

Sensor Type: Electro-
magnetic

Entry Time: Fast
Error Rate: Low
Cost: Medium

Functional without line of

sight.

Versatile: Read/write
capable tags and battery

powered tags exist.

High data density (with

more expensive tags).

More expensive per-use

than optical methods.

Tags with high data
capacity or read/write

capability are expensive.

Quality and read range can

degrade in metallic

environments.

Smart Cards
(subtype of

RFID)

Sensor Type: Electro-
magnetic

Entry Time: Fast
Error Rate: Low
Cost: Medium

Identifies people without

biometrics.

Can be implemented without

the person being present.

Quick and simple to use.

Can get lost / stolen /
abused in ways biometrics

cannot.

Magnetic
Stripe

Sensor Type: Electro-
magnetic

Entry Time: Medium
Error Rate: Low
Cost: Medium

High density of data.

Read / write capability.

Physical contact required to

read data.

Damaged by

electromagnetic fields.

Table 6.2-1 A summary of common AIDC technologies and their properties.
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It is important to note that there is no “best” technology – these technologies are
all in use because they offer unique advantages and disadvantages. These
technologies may also be implemented in isolation or in combination for different
results. When considering which AIDC to use, the encoding, reader, and decoder
should all be considered. For example, what is the available area for the encoding?
Does the encoding need to be human readable as well as machine readable? How
much data must be encoded? In what conditions must the encoding be read – well
illuminated, or irregular and dark? Can the encoding be seen, or is it hidden on the
product?

It’s also important to note that though new and emerging technologies such as
Machine Vision may offer significant new capabilities, tried and tested technologies
such as 1D barcode remain in such broad use due to their efficient, reliable, and cost
effective operation.

6.2.5 Sensors Conclusions

Sensors are of course important in manufacturing for the control of processes,
and many are often built into equipment and integrated into the control systems.
The positions of actuators, presence or absence of parts, rotational speeds of
spindles or temperatures of chemical processes are all examples of process features
that must be monitored for the process to be successful, and often you may not know
the sensors are there at all.

However, a critical part of creating an effective and useful model or digital twin
is access to accurate data about the system you are trying to model. Sensors
integrated into processes can provide useful data for a model, but often the key
missing data is external to processes. The movement of parts around a system, the
use of tooling or materials, inventory management, and any processes that must
collaborate can require additional sensors to be implemented to capture the
performance and parameters.

Sensors can either be read directly (primary sources) or fed into a secondary
control system such as a PLC or embedded computer (secondary source) depending
on application. Data from these can be logged in a database, spreadsheet, bespoke
monitoring software, even manually recorded, and then the data analysed with the
data processing cycle discussed in section 5.2. The difference between the
conventional modelling approaches from section 5.3 and digital twins, is that
conventional modelling takes a snapshot of a system and builds a model that
remains static, whereas a digital twin is connected to the data logging, and can
constantly update the model.
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6.3 Digital Twins

6.3.1 Categories of Digital Twins

“Digital Twin” is an increasingly common buzzword in manufacturing and is
often misused to refer to offline modelling and simulation approaches. As an
emerging area, there are few formal standards for digital twins. The ISO/IEC
JTC1/AG 11 Digital Twin [11] working group and ISO/TC 184/SC Industrial Data
[12] technical committee are working on standards such as ISO/DIS 23247-1 [13]
Digital Twin Framework for Manufacturing, but they are currently not completed.
The German Plattform Industrie 4.0 network also promoted their asset shell
standards for digital twins, but this serves as a starting point rather than a complete
reference architecture. Due to the lack of standardization, the concept of the digital
twin is still diverse, and often understanding is driven by providers of digital twin
software tools. However, some authoritative groups have proposed different
classifications of digital twins. When evaluating software that claims to be a digital
twin, it is worth considering where it falls under these classes.

According to Kritzinger et al. [14] from Fraunhofer Austria Research, the level
of data integration between the physical and digital counterpart enables the
classification of the approach:

1. A Digital Model uses no automatic data transfer between the real/physical asset
and the virtual model, only manual data transfer. Most would not consider this a
real digital twin as the manual data exchange prevents the digital object having
access to real-time data.

2. A Digital Shadow includes a one-way automatic flow of data from the physical
asset to the digital representation.

3. A Digital Twin has data automatically flowing in both directions between the
physical asset and the virtual model. In this instance, the digital twin is able to
control the physical object based on the decisions of digital twin.

Figure 6.3-1 The classes of digital twins according to Kritzinger. The more
automated the flow of information, the closer the result is to a “true” digital

twin [14].
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The Advanced Manufacturing Research Centre (AMRC) at the University of
Sheffield in the UK has proposed classifying digital twins based on the capabilities
and added value given by the digital twin [15]. The core functionality is presenting
data in context, and the type of twin then depends on whether the optional added
value features includes data analytics, control over the physical asset, and/or
predictions via simulations. The three classes are:

 Type 1 Supervisory Digital Twin: A passive monitoring twin, where data is
received from the physical system and combined into a single model. This model
can be used to identify warning limits or thresholds on variables that indicate
issues. Approximately equal to a Digital Shadow in Kritzinger’s classification.

 Type 2 Interactive Digital Twin: The digital twin is able to influence the physical
twin by setting parameters to improve key performance indicators with simple
control algorithms. Control may be complete or partial. Approximately equal to
the full digital twin in Kritzinger’s classification.

 Type 3 Predictive Digital Twin: Integrates simulation and analysis methods to
predict performance based on process data from the physical twin and use these
to optimize processing parameters, and then proactively make these adjustments
as needed in the physical twin.

Figure 6.3-2 The types of digital twins are layered on top of one another,
according to the AMRC classification [15].
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6.3.2 Elements of Digital Twins

Due to the current lack of standards, the components and technical requirements
of a digital twin vary with the type, classification, and supplier of the digital twin.
However, some common elements are emerging.

 Mandatory: Real-Time Connected Physical Twin. Sometimes under considered,
a digital twin requires a physical twin, typically a product or system. The
physical twin can be a dumb and/or uncommunicative, or a smart product/system
capable of machine-to-machine (M2M) communication or of communicating
with humans. The digital twin will require sensors (either integrated into smart
products / systems, or IoT solutions added afterwards), the communication
standards to share the data with the digital twin, and the ability to do so in real-
time. What qualifies as real-time is application dependant, but usually considered
in the order of milliseconds.

 Mandatory: Model. The digital twin requires a virtual equivalent of the physical
twin which gives context to the collected data, differentiating it from a database
or data lake. Despite this difference, the digital twin still requires storage for
collected data, and a database may be the underlying technical implementation
of this. The model is one of the harder elements to define as it is highly
application specific – a model of a factory may be implemented differently to a
model of a jet engine for example. 3D models of the physical twin are a common
consideration, but not mandatory.

 Optional: Analytics and Simulation. One of the most commonly envisaged use
cases of digital twins is to use the twin to perform analysis and understand how
better to control the physical twin. This is typically achieved through the use of
simulation and analytics. It may seem strange that this is listed as optional – what
is the point of a model if you never run simulations on it? However, as described
by the AMRC classification [15], a digital twin can just be a way to present data
in context without any analytics performed directly. Analytics and simulations
remain a very common desirable feature of course but are not mandatory.
Multiple different analytics and simulation techniques can be included in digital
twins depending on the application, with the intention to identify problems or
opportunities in advance based on the incoming data and state of the physical
twin.

 Optional: Control. Giving a digital twin the ability to control the physical twin
is not mandatory (see type 1 supervisory digital twins) but – like analytics and
simulation – is a very common envisaged use. Sensors in the physical twin enable
the data capture, but similarly actuators can enable the digital twin to change
parameters or other elements of the physical twin’s control system. This would
typically be in conjunction with analytics or simulation tools to make the
decisions to change parameters, which are then enacted in the physical twin.
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6.3.3 Applications of Digital Twins

Digital twins can be used in a wide range of applications, including vehicle
automation, power generation, traffic modelling and urban planning, healthcare,
and more. Here however, we will focus on some applications specific to
manufacturing [1].

 Production line replication: One of the most commonly envisioned applications
of digital twins to manufacturing is the creation of a digital replica of a
production line, or entire factory. Manufacturing simulations are not new but rely
on a high degree of understanding of the process being simulated. The real-time
connected nature of digital twins enables the live simulation to improve over
time, to be monitored and optimised based on the real-time state of the system,
and to respond to new and unexpected events. The digital twin serves two
primary goals here. Firstly, the captured data for the production system is unified
and kept in one place, simplifying monitoring and enabling historical snapshots
of the system behaviour to be retrieved if a fault occurs. Secondly, the digital
twin can run front-running simulations, using the faster-than-real time nature of
simulations to “fast forward” and predict the state of the system in the
future [16].

 Product replication: Even complex manufacturing systems may produce simple
products that do not require a digital twin. However, when the product is as
complex as the system that creates it, a product digital twin can offer some
advantages. Similarly to production line replication, using a digital twin for a
product aids in collecting all the data generated in its creation in one place, which
is useful for highly regulated domains such as aerospace or pharmaceuticals.
Digital twins can also be integrated with product lifecycle monitoring systems to
ensure the expected processes are performed on the product, particularly when
there are large sources of uncertainty in the manufacturing process or when
configurations are changed as the product is being manufactured.

 Preventative maintenance: Preventative maintenance is a key technique for
preventing costly breakdowns by scheduling maintenance during breaks in
production to replace worn components before their expected failure.
Preventative maintenance typically is regularly scheduled based on operator
experience and the equipment manufacturer’s guidance. Predictive maintenance
monitors equipment condition with sensors to improve the estimation of when
maintenance must be performed. This both helps determine if equipment will fail
earlier than anticipated, or if the maintenance can be delayed – saving money.

A digital twin of production equipment aids in the implementation of
predictive maintenance by enabling the collection and analysis of sensor data
from the equipment and running analysis to predict the optimum maintenance
window. Data from previous breakdowns can be used to help identify imminent
new breakdowns, and real-time data from the equipment can be compared to past
“ideal” data to look for deviations.



174 J.C. Chaplin et al.

 Robotic planning / cobotics: Industrial robotic path programming is often
developed with offline simulations to plot and test proposed programs, using
software packages such as ABB RobotStudio, KUKA.Sim or Dassault Systemes
DELMIA. These are excellent tools for highly predictable, repetitive tasks.
Where digital twins can aid this process is where the robotic process is variable
or unpredictable. This can occur when the product is large, flexible, or of an
unknown quality. Unpredictability can also occur when humans are involved in
the process, and the increasing popularity of collaborative robotics or cobotics
where robots and humans work together on.

Safety is critical to the successful implementation of cobotics and digital twins
allow the simulation used for motion planning to be updated in real time to ensure
the position and motion of the human worker is accounted for. They could also
allow for virtual or augmented reality techniques to enhance the human worker’s
interaction and control of the cobot.

6.3.4 Examples of Digital Twin Software

Digital twins are an emerging technology, and a rapidly changing field. Without
clearly defined standards for digital twins, what does and does not qualify as a
digital twin is ambiguous. Moreover, many offered digital twin packages are
actually multiple pieces of software which work together to implement the digital
twin. These packages often use an existing modelling and simulation package (such
as those mentioned in section 5.3.5) with add-ons to gather data in real time. Due to
the early-stage nature of the technologies, it is recommended you research solutions
and developments before committing to a specific product or package, and pay
particular attention to the types and elements of digital twins so you can be sure
what you’re purchasing does what you expect. However, here are some examples
of solutions or packages on the market.

 Siemens Digital Enterprise: Siemens’ digital twin offering is a holistic
combination of a range of their software products rather than a single dedicated
piece of software, but these come under the Digital Enterprise portfolio.
Depending on the application area, different tools will be used. For example, in
a pharmaceutical setting STAR-CCM+ is used as the model, HEEDS for
analysis, and SIMATIC SIPAT is used for monitoring quality in real time. As
Siemens also provides a wide range of industrial automation and sensing
equipment, integrating this approach into a real-time digital twin is simplified.

 GE Digital Predix: Predix is a cloud-based data platform that can gather data
from IoT sources, contextualise it with a model, and use analytics algorithms to
predict future events. It has multiple stated applications including component,
asset, system, and process modelling.

 Dassault Systemes 3DEXPERIENCE: Another large portfolio of software,
3DEXPERIENCE covers product design, process planning, simulation and
analytics, and product data management. Calling digital twins
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“3DEXPERIENCE Twins”, the package covers the range of elements required
for a digital twin. Other companies have also used 3DEXPERIENCE as a basis
for their own digital twin products, such as Veristar’s AIM3D which is specialised
for large vessels and gas/oil platform modelling.

 Microsoft Azure Digital Twins: Currently in a public testing phase, Azure Digital
Twins is a forthcoming cloud-based digital twin solution with a domain-neutral
“spatial intelligence graph” approach to modelling, and integration with Azure’s
existing IoT data ingress, machine learning and AI capabilities. Microsoft have
also partnered with Ansys Twin Builder to add additional capabilities around
predictive maintenance.

6.3.5 Implementation Challenges

As an emerging area, there are several challenges for digital twins to overcome
to become mainstream. These are summarized here, and are aspects to be mindful
of before adopting any specific digital twin solution.

 Standards and Interoperability: As discussed in section 6.3.1, there is currently
a lack of industrial standards for digital twins, and even when they are finalized
the adoption will take time. As a result, interoperability between different
vendors of digital twin solutions or components of a solution may be limited.
Many current tools are based on existing suites of manufacturing software, and
mixing and matching these may be costly or not possible.

 Trust: A key part of digital twin sales pitch is for a system to self-optimize, with
analytics and simulations being run on live data and the findings being used to
tune and optimize the physical twin. However this requires a level of trust on
behalf of the operators – a few incorrect decisions or wrong deductions could
cause digital twin adopters to sever the automated control loop and instead use
the digital twin as advisory rather than fully integrated.

 Data Quantities: A key aspect of digital twins is to collect real-time data in a
single place and be able to present it in context (see Figure 6.3-2). This approach
is not dissimilar to data lakes and data warehouses but unlike these approaches
digital twins require the centralized data in real-time. Depending on the volumes
of data, the distance of the data sources, and the method of data transmission,
sending raw data may simply not be possible. Pre-processing data before
transmission may go some way to alleviating.

 Cybersecurity: Any company innovating in Industry 4.0 is unfortunately a target
for malicious entities, from individuals, organized gangs, to nation states. Irdeto
found that 79% of surveyed companies implementing IoT has suffered some sort
of cyber-attack against their IoT systems in the previous year [17]. The
consequences of a cyber-attack on a digital twin could be significant, ranging
from disruption of the physical twin, ransomware attacks, or theft of intellectual
property due to the richness of data stored in the digital twin. Typical industrial
security methods such as hardware security and air-gapping are no longer
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sufficient. Instead, software-based protection should be implemented, a well-
defined business process for software/firmware updates should be enacted, and
data encrypted where possible.

 Implementation: Digital twins require the involvement of a wide range of
equipment and people within a business to take maximum advantage of the
approach. A common buzzword for digital twins is “holistic” i.e. something that
is more than the sum of its parts, but in this case the word is appropriate. Digital
twins can draw data from across a business, and if the data isn’t already organized
or well understood the digital twin implementation process may be a painful one.
Gartner [18] released a study conducted in 2017 among 202 companies, and
described four best practices for implementing and maintaining digital twins:
1. Investments in digital twin solutions could be driven by the product or process

value chain, understanding why stakeholders need access to the data or
control of the physical twin is key.

2. Standardized documented procedures should be carried out during the
creation to the digital twin to ensure this potentially highly complex system is
well documented and understood, which will facilitate changes and upgrades.

3. Use and access of data should be possible from multiple sources to allow
interaction and evolution of the digital twin. This may require existing data
silos to be broken down and standards implemented within the enterprise so
that data can be accessed more widely.

4. Proprietary software and non-standard formats should be avoided to ensure
the company doesn’t get locked into an approach or is unable to integrate new
software components.

6.4 Decision Support Systems

6.4.1 Introduction

Throughout this book the concept of decision making has been discussed, and its
importance emphasised. The role of analysis in manufacturing is to enable better
decisions to be made, and therefore for the business to be more productive and more
profitable. All the tools and methods we have discussed exist to inform decisions.
However, another classification of tools exists that can aid with decision making –
the Decision Support System (DSS).

A DSS is a software system to support decision making in an enterprise,
including but not limited to manufacturing. They typically have a constrained area
of interest (the domain) in which they aid decisions. For example, DSSs are
increasingly common in the medical field to aid with diagnosis and treatment plans
where the problems are far from structured. There are three classes of DSS,
representing the type of support they give:

 Passive: Offers information and analysis to aide a human in the decision making
process, but doesn’t offer any direct suggestions or solutions.
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 Active: Analyses available data to offer suggestions and solutions to the user.
 Cooperative: Offers suggestions and solutions to the user, but also takes

feedback from the user to refine and improve the decisions and suggestions.
These are rare outside of research however.

In addition, DSSs fall into four further classes based on the type of assistance
they offer, and these are discussed in the following section.

6.4.2 Classes of Decision Support System

6.4.2.1 Communications-Driven

Perhaps the most common form of DSS, and one you may be using without
realising that it is a decision support tool at all. Communications-Driven DSS (CD-
DSS) facilitates decisions by allowing users to share information to collectively
make a decision. They are often called Group Decision Support Systems for this
reason. A CD-DSS does not generate or analyse data by itself, it makes it more
available to users, including users who are distributed rather than co-located, and
who are communicating asynchronously.

Examples include document sharing tools such as Google Docs or Microsoft
SharePoint, and collaboration tools such as Slack or Microsoft Teams. Even
teleconferencing solutions such as Skype or Zoom are sometimes described as CD-
DSSs. These systems allow for users to make better decisions about unstructured
and semi-structured problems by better pooling and sharing experience and
knowledge, rather than the problem being tackled by a single individual. CD-DSSs
are examples of passive DSSs.

6.4.2.2 Data-Driven

For semi-structured problems and even some structured ones, data may be
available to inform the decision, but in a format which makes its use difficult or
impossible for the decision maker to use effectively. Data-Driven DSSs (DD-DSS)
take data (typically time-series data) and presents it to the user in a more informative
manner, possibly after some initial analysis of the data. The data will be sourced
from a company database or databases, and also sometimes include external data
sources. Data is usually historical, but sometimes includes real-time data. The
largest challenge with DD-DSS approaches is the integration of the data – how is
machine-generated data captured and integrated with human-generated data.

A manufacturing dashboard is a common example of a DD-DSS in industry,
displaying key data drawn from multiple sources to give a clear indication of the
state of the shop floor, of the order book, or of productivity. Common examples
include Microsoft Power BI, Dundas BI, and Tableau, but many companies also
develop customised dashboards with visualisation libraries such as R Studio’s Shiny
or Grafana. Many approaches are directly integrated into the database such as SAP
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HANA. Even a spreadsheet’s reporting and graphing features can achieve these
goals.

DD-DSSs are the second most common example of DSS, and the most common
that people commonly consider as a DSS. They are often referred to as Business
Intelligence packages, reflecting the increasing sophistication of the tools offered.
They are usually passive, but increasingly have active decision support tools.

6.4.2.3 Model-Driven

Model-Driven DSSs (MD-DSS) use simulation models for decision support by
offering predictions of the outcomes of changes to the existing circumstances. These
can be numerical models build in spreadsheets, computer-aided design (CAD)
models of products, all the way to multi-physics 3D simulations of manufacturing
processes.

Figure 6.4-1 Analytical Hierarchy Processes are used to start deconstructing
extremely complex and subjective problems to try to structure them into a model

that allows alternatives to be tested.

Computer simulation offers the great advantage of studying and statistically
analysing what-if scenarios, reducing the overall time and cost required for taking
decisions. Monte Carlo simulation, discrete event simulation, agent and multi-agent
simulation, system dynamics, and visual simulation are all in increasingly common
use in manufacturing, and are discussed in section 5.3, The introduction of advanced
simulation-based visualization of CAD designs with interaction and collaboration
technologies such as augmented reality and virtual reality (AR/VR) is changing the
product design process, enabling visual prototyping but also simpler collaboration
between distributed teams, enabling CAD modelling to implement elements of
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Communications-Driven DSS. Models and simulations are typically active DSS
systems, giving the user the results of their proposed choices and in some cases
running algorithms to show the optimal choice for a problem.

Also under the MD-DSS category are decision analysis models (DAM). DAMs
are statistical tools and methods such as analytical hierarchy processes (AHP),
decision tree analysis, multi-criteria decision analysis, and probabilistic forecasting
to support decision making where multiple criteria needs to be considered and there
is no single optimal answer.

6.4.3 Knowledge-Driven

Knowledge-Driven DSSs (KD-DSS) gather data, information, and knowledge
from within the company and from external sources. They then use this database of
past knowledge to make decisions with artificial intelligence (AI) techniques and
recommends action. KD-DSS use AI techniques to combine large quantities of
domain knowledge and past experiences to form new information. Expert Systems
(which reached peak popularity in the 1980s and 90s) are a form of KD-DSS and
used if-then rules and heuristics to solve problems. More modern KD-DSS use the
latest developments in AI techniques such as neural networks, machine learning,
fuzzy logic and genetic algorithms.

Reciprocal Learning-Based DSS (RL-DSS) are a sub-class of KD-DSS and can
learn from common decisions and take over this decision making to reduce the
human decision-making load. Routine decision tasks can be learned and
programmed, and decision makers can update their knowledge and help create more
intelligent decisions than previously possible for semi-structured problems.

In a manufacturing environment, capturing expert domain knowledge is a
challenge. Instead, most modern manufacturing KD-DSS systems use data mining
and machine learning to take large volumes of historical data and use this to
determine the optimal course of action rather than relying on domain experts turning
their knowledge into rules. Machine learning is proving extremely successful for
classification problems such as defect classification, detecting problems with
manufacturing processes so proactive and preventative maintenance can be
performed, and creating models of manufacturing processes that were previously
too complex for humans to fully understand

A famous example is IBM’s Watson. Watson is a natural language question-
answer computer system and is a form of KD-DSS, using a huge databank of
knowledge and rules to rapidly answer questions. It used this approach to win first
place in the game show Jeopardy!, beating the previous champions by a significant
margin. Watson uses a complex method answering questions, but still shares the
same approach as any other KD-DSS. How to answer the question is the decision,
and it uses databases of information to propose possible solutions, and then a second
database to determine which solution is most likely to be successful. This process
takes milliseconds.
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Figure 6.4-2 IBM’s Watson used advanced natural language processing to analyse
a question’s meaning, and then draws upon a vast database of information to
hypothesis answers and weigh them up with answers. Watson may be at the

cutting edge of DSS systems, but the techniques used are increasingly common in
commercial solutions.

6.5 Case Studies

6.5.1 Shop-Floor Monitoring – Rold

Rold are a medium-sized company in the domestic appliance components sector.
The company has a high level of flexibility and responsibility due to being a family-
run business, and have been able to combine this with the introduction of modern
management approaches and novel technologies, constantly updating their
standards in the search for the best performance to offer the market.

The company was experiencing the following issues in its production plant:

 Production machinery not connected to each other, thus not allowing, e.g., an
efficient monitoring of the energy consumption as well as the analysis of the
production data.

 Data not being available in real time and communicated in paper format,
delaying the identification of problems and rectifying action.

 Widespread presence of subjective information and not objectified by the
process, replying on operator expertise.

 Difficulty in having visibility of inter-plant processes, hindering identification of
‘big picture’ problems.

 Digital technologies not very common at the shop floor level.
 Need for operator empowerment in process control.

Many small to medium companies will look to external IT companies or solution
vendors for assistance with digital twins or decision support systems. Due to Rold’s
size however, it possessed the in-house expertise to develop its own solution, which
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has since become a commercial product. Rold SmartFab is the result of Rold's
research and development collaboration, which has put together internal company
know-how and technologies to create a system for manufacturing SMEs that allows
monitoring and analyzing information coming from the company's subsystem
plants, and making them available on fixed, mobile and wearable devices. SmartFab
is suited for companies in the mechatronic and manufacturing sectors, since it
acquires the operating status of the machines and presents it in a user-friendly
manner, in real-time and on smart devices anywhere. This allows for rapid
identification of production issues, such as downtime and significant slowdowns.
This digital manufacturing platform allows for:

 Real time monitoring of production lines.
 Real time data and alarms on touch screen devices and mobile devices, as well

as wearable devices that are user-friendly (e.g. smartwatches).
 Using open standards and middleware, allowing modern machines to

communicate with older ones.
 Cost reduction thorough a reduction of technical intervention and maintenance

times.
 Empowerment of operators in the control of processes as they can now quickly

access objective information.

A reduction of energy consumption and associated costs thanks to the possibility
of measuring the energy usage of individual production resources in real time.
Increasing the level of the operators’ soft skills in terms of digitalization, paving the
way for the future. The company mainly needed to overcome technological barriers
related to the necessity of connecting heterogeneous machines, including legacy
systems without standard interfaces. This shows the importance of open standards
in manufacturing digitalization. If you are trying to gather data from multiple
machines old and new, from multiple vendors with multiple communication
protocols, you may have issues unless you are able to use common standards.

6.5.2 Remote Sensing - Alascom

Alascom are a medium IT-technology services company founded in 2001 and
based in Milan, Italy. Alascom has developed extensive telecommunications and
system integration expertise. For several years, it has implemented a solution-
providing strategy combined with the development of new innovative solutions to
integrate the production domain with the Information and Communication
Technology (ICT) domain, broadening the approach to cover the Internet of Things
(IoT), Industry 4.0 and data analytics. Alascom is expert in statistical analysis and
programming tools, mathematical models, AI machine learning, and in memoryDB.

Alascom were tasked with implementing monitoring systems for a range of
biogas plants to provide a comprehensive view of the entire plant network as well
as individual plants. Biogas plants are complex systems that obtain “clean” energy.
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Due to their complexity, maintaining correct functioning is fundamental to
guarantee constant revenues flows as well as to avoid extra costs due to breakdowns,
malfunctions, and downtimes. Furthermore, improving the efficiency and
effectiveness of the electrical energy production of the plants is another fundamental
objective which may be possible through better monitoring. The geographic
dispersion of the plants and the inability to keep specialized maintenance personnel
onsite and to improve the production performances means any monitoring solution
must be remote, centralized, and granular.

Monitoring provides a comprehensive view of the entire plant and the details of
the individual monitored systems. The objective is to improve the efficiency of the
production process through the use of software that allows maximization of the
revenue/cost ratio, to have a greater understanding of the process itself and to better
understand the impact of different operating modes to reduce the complexity of
network management.

The software, designed to be adaptable to different production plants, is able to
normalize data coming from multiple sites enabling comparison between different
plants in scope and size; the greater quantity of data can be analyzed to benefit each
plant. The software architecture takes data from newly installed smart meter sensors
and performs data analysis. The steps are as follows:

1. Smart energy meters installed in the biogas plant are used to monitor the
electrical consumption of auxiliary systems.

2. “Concentrators” gather and combine data from the smart meters at a specified
frequency and return the values in a standards-compliant manner on the physical
Ethernet channel and the Modbus TCP protocol.

3. IoT gateways acquire data from multiple sources, normalize the data, and send
it to the database of a digital platform, where the data is then then processed and
presented. This architectural element is able to communicate with different
systems, in particular with the concentrators for the acquisition of electrical
measurements of the biogas auxiliary systems, and with the process controllers
for the acquisition of data available from the existing control system.

4. Finally, a digital platform composed of a cloud database and web-based user
interface. The first architectural level acquires normalized data, that is then
stored and made available to the web service interface. The front-end is
developed with web services technologies, it allows the visualization of plant
data with appropriate indicators, dashboards and tables defined with the support
of the domain experts of the client company. The filters available in the web
interface allow the user to enter specific requests and obtain analysed
information - graphical or numerical - in either descriptive or statistical-
predictive form. The system, through the use of appropriate algorithms that
operate on available data, automatically suggests what actions need to be carried
out and when, also taking into account any constraints imposed by the user.
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The sensor integration and software solution was a success – all the biogas plants
can be monitored remotely from a single location, reducing costs and improving the
efficiency of the plants. The project was not without challenges however, and the
integration of the client company’s biogas plant experts, consulting smart sensor
experts, and Alascom’s own software engineers was the single largest challenge
they faced.

6.5.3 Connected Transport Systems – Bellini

Bellini is a small company specialized in the development, production,
marketing, and technical assistance of lubricants and fluids. Due to the complexities
of chemical manufacturing and the weight of the materials and products, Bellini
wanted to review the production process with the integration of software for remote
monitoring, as well as integration of automated guided vehicles (AGVs) for
automated materials and product transport.

Shop-floor operators currently use stand-alone programmable logic controllers
(PLCs) to control the production process: the information is not shared with the
enterprise resource planning (ERP) software. It is necessary to improve the user
interface in the silos and mixers area so that the information necessary for carrying
out the activities within the process are more complete and shared with the ERP
system. Additionally, the handling of materials and products between the
production and the logistics department takes place manually. It is necessary to
implement a transportation system for automated handling from the production
department to the shipping bay.

Given the specified needs, the company decided to purchase a software program
to monitor the progress of activities. In particular, the intervention envisaged the
introduction of a software for remote control of the PLCs, the revamping of the
sensors, and the replacement of the current LCD panels on the equipment with
intuitive and larger touch screens. Improved access to information, allowing it to be
viewed remotely or simply in a clear and unified manner is an example of a data-
driven decision support system. Being able to clearly see the state of a system at a
glance makes quick and effective decision making simpler and less prone to error.
Thanks to the remote access of the PLC data, it will be possible to identify
equipment failures and other losses quicker. The remote access of the PLC data
avoids manual data entry giving a reduction of worker time and fewer introduced
errors.

Control of AGVs often requires a digital twin approach for highly dynamic job
routing typical of smaller dynamic companies – the live location of the AGVs needs
to be controlled to ensure material can be routed where and when it is required in a
safe manner. The new automated material handling system will allow the movement
of material between the two departments in an automated way, thanks to the use of
an AGV connected to positioning sensors, both on board and in the plant. The AGVs
are more energy efficient than the current manual handling machines (forklifts
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mainly) saving costs. Manual material handling time is reduced thanks to the use of
the AGV.

The main challenge was the search for the appropriate technological solution.
One was eventually found after 4 months of design study. It was also an extensive
investment to both acquire and to plan the integration of the system. As with any
significant investment in digital manufacturing technologies, it is critically
important to have a solid business case developed that shows the value of the
proposed solution to the business.

6.6 Conclusions

This chapter discussed the latest advances in production analysis, including the
use of online modelling and simulation (digital twins) and support tools for decision
making (decision support systems), as well as detailing some use cases of examples
of how access to data and the use of simulations can support businesses.

As these fields are new and/or rapidly evolving, it is important to understand
both their strengths and limitations. There is a lot of hype surrounding digital twins,
and the lack of standards mean many products may be labelled as digital twins
without necessarily having the functionality you might expect. Though the potential
advantages of online systems are significant, there are risks of investing in
technology which may not be fully supported in the future, and which may not
deliver on investment.

Critically before making any investment in a new modelling package of digital
twin system is to develop a business case for it. What questions will this new
approach enable us to answer that we could not before? How will we use the new
information to improve productivity (or any other key performance indicator)?
What changes will we need to make to our working processes, and how long will
training and acclimatisation take? Particularly for digital twins where established
standards have not been settled and buzzwords are frequently used, it is important
to understand exactly what is being offered and the potential costs and benefits
thereof.

If there is one critical lesson in this book, it is that mathematical formulae, digital
modelling software, decision support systems and digital twins are all tools to assist
in the decision-making process. All these tools have their strengths and weaknesses,
and areas of applicability; the chapters in this book are not a scale from ‘bad’ tools
to ‘good’ tools, only from manual, to offline digital, and then online digital.
Understanding the decision-making process, the measurable key performance
indicators, and why an analysis tool is required, and which is most useful is a critical
skill for effective decision making in a manufacturing context. Without
understanding exactly what questions are being asked and why, supporting tool will
not be able to offer their full capacity in aiding the enterprise in answering those
questions.
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